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The night before the birthday party you open the box and
separate the assembly instructions from the parts for the child’s
new toy. Do you memorize all of the instructions, put them aside,
and then assemble the toy from memory? Or, do you read the first
line, put the instructions down, do the first step, pick up the
instructions, read the next line, put the instructions down, do the
next step, and so on until the toy is complete? Whatever you do,
you are making tradeoffs between strategies that minimize the use
of memory by making repeated interactions with the task environ-
ment versus strategies that minimize interactions by increasing
their demands on the memory system.

At a second-by-second level of analysis, interactive behavior
can be analyzed as a complex mixture of elementary cognitive,

perceptual, and motor operations (e.g., Gray & Boehm-Davis,
2000). Although all three types of operations are required for
any interactive behavior, as in the example of the assembly
instructions for the new toy, frequent accesses of knowledge
in-the-world (Norman, 1989, 1993) will be characterized as
more interaction-intensive, whereas greater reliance on knowl-
edge in-the-head will be characterized as more memory
intensive.

Few people would be surprised by the observation that some-
times they take notes and sometimes they memorize things, or that
they sometimes look at their notes and sometimes simply remem-
ber what they have written. However, although such interactions
are commonplace, until recently the interleaving of cognition,
perception, and action has been little noted and less studied by the
cognitive community.

An important spur to the status quo came when researchers
(Card, Moran, & Newell, 1980, 1983; Larkin, 1989; Larkin &
Simon, 1987; Norman, 1982, 1989) began trying to apply cogni-
tive theory to real world problems. These attempts at cognitive
engineering (Norman, 1982, 1986), although productive (Gray,
John, & Atwood, 1993), revealed the limits of cognitive theory
(Gray, Schoelles, & Myers, 2004) and spurred many cognitive
researchers to study how cognition, perception, and the motor
system worked together when moderately complex laboratory
(Freed, Matessa, Remington, & Vera, 2003; Gray & Boehm-Davis,
2000; Howes, Lewis, Vera, & Richardson, 2005; Kieras & Meyer,
1997; Ritter, Van Rooy, St. Amant, & Simpson, in press; Taatgen
& Lee, 2003) or complex real-world tasks were performed (Byrne
& Kirlik, 2005; Salvucci, in press).
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Initially, researchers were content to demonstrate that the task
environment in which interactive behavior takes places could
influence the higher-level strategies that people adopt for decision
making (Lohse & Johnson, 1996), problem solving (O’Hara &
Payne, 1998, 1999), or game playing (Kirsh & Maglio, 1994).
Recently, attention has turned to studies that have shown system-
atic effects of the design of the task environment on the methods
that people adopt for routine tasks such as simple mental arith-
metic (Neth & Payne, 2001; Stevenson & Carlson, 2003). Al-
though each of these studies implies a general sensitivity of the
human control system to perceptual-motor costs, what is lacking is
a functional mechanism that adjusts the mixture of low-level
cognitive, perceptual, and motor resources to produce the observed
higher-level changes in behavior.

Gray and Boehm-Davis (2000) noted that the procedural steps
that implement low-level goals are selected as if milliseconds
matter. Although other researchers tend to agree that the selected
routines conserve milliseconds, they do not agree that temporal
costs are the causal basis of selection as opposed to a correlated
measure. In a series of studies, Carlson and associates (Carlson &
Sohn, 2000; Cary & Carlson, 1999; Sohn & Carlson, 1998, 2003;
Stevenson & Carlson, 2003) have shown that people adapt their
interactive behavior to the tools they have available. Indeed, if left
to their own devices, people spontaneously adopt methods for
doing simple arithmetic that shave 200 ms off of alternative
routines. However, rather than basing selection on time per se,
Cary and Carlson (1999, p. 1067) concluded that, “Participants
without memory aids tended to choose solution paths that mini-
mized working memory demands.”

Similarly, when the cost of accessing needed information was
increased by milliseconds from an eye movement to a head move-
ment, Ballard, Hayhoe, and Pelz (1995; Pelz, 1996) noted a small
decrease in gaze frequency to an external display. However, like
Carlson and associates, rather than concluding that the selection of
interactive behaviors minimizes effort defined by time, they con-
cluded that, “Observers prefer to acquire information just as it is
needed, rather than holding an item in memory” (Hayhoe, 2000, p.
50). As elaborated later, this minimum memory hypothesis appears
related to views that cognitive limitations (in this case, working
memory) bias the control system to offload work onto the
perceptual-motor system (Wilson, 2002). The minimum memory
hypothesis is thus one candidate explanation for the functional
mechanism that adjusts the mixture of low-level cognitive, per-
ceptual, and motor resources.

Throughout this paper the implications of the soft constraints
hypothesis for resource allocation will be contrasted with those of
the minimum memory hypothesis. The next section introduces the
soft constraints hypothesis as an alternative functional mechanism
to the minimum memory hypothesis. The distinction between soft
constraints and minimum memory hypotheses is elaborated, and
the concept of an ideal performer analysis as a tool to study the
implications of constraints on cognition is introduced. The Exper-
iments section is an overview of three experiments that provide
increasingly persuasive evidence in favor of soft constraints. Our
Ideal Performer Model, based on our ideal performer analysis, is
presented next. This model serves as an explicit test of the suffi-
ciency of the soft constraints hypothesis as an explanation for the
functional mechanism underlying the control of interactive behav-

ior. As we will show in the model results section, the Ideal
Performer Model provides a close fit to the human data. The last
section summarizes the results and concludes that the human
control system is not biased to conserve cognitive resources at the
expense of other resources, but rather that the selection of inter-
active behaviors is driven by cost-benefit considerations. When the
expected utility (i.e., the cost-benefit tradeoff) of alternative inter-
active behaviors can be quantified in terms of time, those that
minimize milliseconds are selected over those that minimize cog-
nitive resources.

Soft Constraints, Minimum Memory, and the Ideal
Performer

The essence of soft constraints is a hypothesis about the func-
tional basis for selecting one low-level interactive routine over
another. Interactive routines are envisioned as dependency net-
works of low-level cognitive, perceptual, and motor operators that
come together at a time span of about 1/3 to 3 seconds in the
service of low-level interactive behavior (Gray & Boehm-Davis,
2000).1 Interactive behavior proceeds by selecting one interactive
routine after another or by selecting a stable sequence of interac-
tive routines (i.e., a method) to accomplish a unit task (Card et al.,
1983). Adopting Ballard’s (Ballard, Hayhoe, Pook, & Rao, 1997)
analysis of embodiment, we see these interactive routines as the
basic elements of embodied cognition.

The Soft Constraints Hypothesis

The rational analysis perspective (Anderson, 1990, 1991; Oaks-
ford & Chater, 1998) has shown that it is important to step back
from the study of mechanisms to ask about the environments in
which these mechanisms are applied (Gray, Neth, & Schoelles, in
press). If we assume that the mechanisms responsible for goal-
directed human behavior are adapted to the structure of their task
environment, then finding an appropriate description of the envi-
ronment may yield important constraints on the nature and behav-
ior of functional mechanisms. Anderson and Schooler’s classic
work on the structure of the environment for human memory
(Anderson & Schooler, 1991) is a prime example of this approach,
as is the more recent work on the statistical properties of the
perceptual environment (Geisler & Diehl, 2003; Purves, Lotto, &
Nundy, 2002).

Interactive behavior is usually in the service of higher-level
goals. Anything that increases its performance helps us achieve
these goals faster. In the nonlaboratory world, besides decreasing
costs in terms of time (and presumably, resources), efficient inter-
active behavior may make the difference between the success or

1 In Gray and Boehm-Davis (2000) we used the term “basic activity” to
describe these combinations of low level operators. Our current use of the
phrase “interactive routine” is, in part, a homage to Hayhoe’s (2000) and
Ullman’s (1984) use of the term “visual routines.” However, in larger part,
“interactive routine” better reflects the notion that certain combinations of
low-level cognitive, perceptual, and action operations can be regarded as
building blocks of interactive behavior as well as the notion that at this
level of description all behavior is composed of cognitive, perceptual, and
motor operations.
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failure of higher-level tasks. Hence, in situations as diverse as
playing computer games, tuning a radio while driving in busy
traffic, searching for information amid the near-infinite space
defined by the World Wide Web, and assembling a child’s toy, the
time required for interactive behavior may be a cost, whereas
achieving the goals of the behavior may be a benefit.

Simply stated, the soft constraints hypothesis maintains that at
the 1/3 to 3 sec level of analysis, the control system selects
sequences of interactive routines that tend to minimize perfor-
mance costs measured in time while achieving expected benefits.
Cost-benefit considerations provide a soft constraint on selection
as they may be overridden by factors such as training or by
deliberately adopted top-down strategies.

Negotiating cost-benefit tradeoffs in the selection of interactive
routines does not guarantee optimal performance in a task; that is,
locally optimal interactive routines may not lead to globally opti-
mal performance. Rather, the soft constraints hypothesis predicts
optimal performance only in tasks where maximizing the expected
gains and minimizing the expected costs of interactive routines
(i.e., over 1/3 to 3 sec) is congruent with an optimal strategy at the
global task level. In environments that violate this property, the
soft constraint hypothesis predicts persistently suboptimal perfor-
mance (Fu & Gray, 2004, in press). This focus on local optimiza-
tion is consistent with the rational analysis position that “Specify-
ing the computational constraints essentially amounts to defining
the locality over which the optimization is defined” (Anderson,
1990, p. 247). The extent to which human goals can be achieved
by optimizing at the level of interactive routines is the extent to
which the soft constraints hypothesis represents a rational adapta-
tion to the environment.

In summary, the soft constraints hypothesis applies the rational
analysis (Anderson, 1990, 1991) approach to the allocation of
cognitive, perceptual, and motor resources for interactive behavior.
These resources are encapsulated in interactive routines that are
described at the 1/3 to 3 sec level of analysis. To the extent that the
elements going into the calculation of expected utility are variable,
unstable, or overridden by deliberately adopted policy, then cost-
benefit calculations provide a soft, not hard, constraint on the
selection of interactive behavior. However, the soft constraints
hypothesis assumes that the selection of interactive routines min-
imizes performance costs measured in the currency of time. The
objective of minimizing time is a soft constraint, and it is the
deviations from this policy that must be explained. In this paper we
seek to strengthen the soft constraints hypothesis by showing that
its predictions are supported by empirical data and that an Ideal
Performer Model, which enforces a strict temporal cost-benefit
accounting, fits the empirical results.

Soft Constraints Versus the Minimum Memory Hypothesis

In contrast to the soft constraints hypothesis, alternative views
of embodied cognition suggest that cognitive resources are con-
served by biases that favor the use of perceptual-motor resources
(Wilson, 2002). The minimum memory hypothesis provides a
specific instance of this view of embodiment which suggests that
the control system is biased toward reducing memory costs even
when the costs of information access (as measured by time) for
perceptual-motor strategies are much greater than the costs for

memory strategies (Ballard et al., 1997). An attraction of the
minimum memory hypothesis is that it offers a simple heuristic for
governing behavior, and unlike the soft constraints hypothesis,
does not require an accounting of costs sensitive at the level of
hundreds of milliseconds.

The minimum memory hypothesis seems to embrace a limited
capacity view of memory in which capacity is defined either by the
number of slots available in a short-term or working memory
buffer (Miller, 1956) or a limit on the amount of activation
available to that buffer (Just & Carpenter, 1992; Just, Carpenter, &
Keller, 1996). (For more detailed and more recent discussions of
limited capacity see, e.g., Cowan, 1997, 1999; Engle, Tuholski,
Laughlin, & Conway, 1999.) If there is only “so much” memory
available for use, then it is reasonable that this precious resource is
conserved whenever possible either to avoid overloading the sys-
tem or to have reserves available if needed for more important
tasks.

All memory theories of which we are aware hold that encoding
items into memory requires time and that once items enter memory
they may be forgotten. The soft constraints hypothesis implies that
on the memory side of the tradeoff between interaction-intensive
and memory-intensive strategies, the only factors that matter are
the time required to encode, the time required to retrieve an item
from memory, and the probability that an encoded item can be
retrieved (i.e., is not forgotten) when needed. An item that is
forgotten represents time wasted in the original encoding, time
wasted in the attempted retrieval, and additional time required to
recode and reretrieve the item. Hence, the soft constraints view on
use of memory as a resource is that only milliseconds matter; there
is no particular premium on conserving memory and no inherent
bias favoring perceptual-motor effort.

In a search of the literature we have found no tests that directly
pit any form of the minimum memory hypothesis against any form
of the soft constraints hypothesis. However, at least two studies
have indirectly examined tradeoffs between memory utilization
and perceptual-motor effort, one by Ballard (Ballard et al., 1995)
and one by Gray and Fu (2004).

Ballard, Hayhoe, and Pelz (1995) used a Blocks World task (for
our version of the Blocks World task see Figure 1) to study
patterns of information access. The participant’s task was to re-
produce the pattern of blocks presented in the Target Window in
the Workspace Window using blocks obtained from the Resource
Window. In Ballard’s study (and unlike ours) all windows were
freely visible at all times. Information access required only an eye
movement.

Ballard and colleagues report that participants preferred an
interaction-intensive strategy in which they would look at the
Target Window first to encode a block’s color, get a block of that
color from the Resource Window, look again at the Target Win-
dow to encode the block’s location, then move to the Workspace
Window to place the block. They report that the interaction-
intensive strategy of looking twice took 3 s to execute, whereas the
more memory-intensive strategy of encoding color and location at
the same glance took 1.5 s to execute. They comment that “It is
surprising that participants choose minimal memory strategies in
view of their temporal cost” (Ballard, Hayhoe, & Pelz, 1995, p.
732).
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Although this dramatic bias toward perceptual-motor access
costs seems to support the minimum memory hypothesis, the study
that Ballard and colleagues report contains a potential confound.
Participants used the interaction-intensive (i.e., mostly perceptual-
motor) strategy at the beginning of the task and used the memory-
intensive strategy “only at the end of the construction” (Ballard,
Hayhoe, & Pelz, 1995, p. 732) of the 8-block trial. The differential
use of the two strategies at different phases of construction raises
the question of whether the cost of encoding required by the
memory-intensive strategy was paid at the end of the trial, as
Ballard seems to assume, or whether it was amortized over the
entire trial. If memory for the pattern of blocks was strengthened
throughout the trial (e.g., Chun & Nakayama, 2000; Ehret, 2002),
by the time the last few blocks were placed, their color and
position information could be retrieved from memory with little
additional encoding. Hence, if encoding time is amortized over
both early and late block placements, then end of trial events do
not provide clean estimates of the time costs for encoding blocks
in memory.

In a study involving programming a simulated VCR, Gray and
Fu (2004) showed a progressive increase in errors and in trials-to-
criterion as the cost of information access increased. We manipu-
lated the cost of accessing the information required to program
shows. For all groups, show information was located in a window
5 in. below the VCR window. For the Free-Access group, the show
information was clearly visible at all times. For the Gray-Box and
Memory-Test groups, field labels (such as Channel, Start Time,
End Time, and Day-of-Week) were clearly visible, but the values
of these fields (such as 32, 11:30, 12:30, and Sat) were covered by
gray boxes. To access, for example, the current value of the
Channel field, participants were required to move the mouse to and
click on the gray box. Prior to programming a show, the Memory-
Test group was required to memorize the show information (thus
the term, Memory-Test).

For each group, Gray and Fu estimated the costs of accessing
information in-the-head versus in-the-world. The retrieval latency
for well-learned information was estimated as between 100 and
300 ms (Memory-Test group); whereas the latency for less well-

ERASE
Stop-Trial

Target Window Workspace Window

Resource Window

Figure 1. The Blocks World task. The figure shows a random arrangement of eight colored blocks in the Target
Window (top left), eight colored blocks plus an eraser in the Resource Window (bottom left), and one block
(correctly placed) in the Workspace Window (upper right). In the actual task all windows are covered by gray
boxes, and at any time only one window can be uncovered. (Note that the window labels do not appear in the
actual task.)
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learned information (the Free-Access and Gray-Box groups) was
estimated as between 500 and 1,000 ms. Contrariwise, the cost of
shifting visual attention and the eyes to freely accessible informa-
tion in-the-world was estimated as 500 ms (Free-Access group),
whereas the cost of moving the mouse, visual attention, and
clicking on a gray box was estimated as 1,000–1,500 ms (Gray-
Box and Memory-Test groups).

By informal standards it would seem that the Free-Access and
Gray-Box groups (i.e., the two groups that were not forced to
memorize show information) had easy access to perfect knowledge
in-the-world; such access could easily compensate for their less
than perfect knowledge in-the-head. Hence, it was somewhat sur-
prising that the Memory-Test group made fewer errors and reached
criterion in fewer trials than either of these groups. Indeed, for
these two groups, performance was inversely correlated with the
cost of external information access. The Free-Access group, which
could obtain show information at any time by shifting their point-
of-gaze by 5 in., performed better than the Gray-Box group, which
had to move their mouse cursor 5 in. and click the mouse to
uncover an information field.

These findings were interpreted as suggesting a race between
the time costs for memory retrieval versus the time costs required
either to move, click, and perceive, or to saccade and perceive.
Rather than obtaining perfect information from in-the-world as
they needed it, both the Free-Access and Gray-Box groups pre-
ferred to rely on knowledge in-the-head. Unfortunately, this
knowledge was obtained in the course of programming a show
and, as the data suggest, was not as well learned as that obtained
by the Memory-Test group. Surprisingly, this increased reliance on
imperfect knowledge in-the-head over perfect knowledge in-the-
world was obtained even though it produced more errors and kept
participants in the experiment longer. This surprise is consistent
with our earlier observation that soft constraints work locally to
select least-effort interactive routines. However, locally optimal
interactive routines may not lead to globally optimal performance
(Fu & Gray, 2004, in press).

Unfortunately, neither Ballard’s study nor ours directly com-
pared minimal memory with the soft constraints hypothesis. Nei-
ther study attempted to rule out attempts to conserve memory or to
demonstrate a bias favoring perceptual-motor effort. In the work
presented here, we attempt to show that differences of several
hundreds of milliseconds are enough to shift the allocation of the
resources used for interactive behavior from more interaction
intensive to more memory intensive.

To summarize, although tradeoffs between interaction-intensive
and memory-intensive strategies have been documented, it is less
clear what the nature of these tradeoffs are. Gray and Fu argued
(2004) that, when alternative means of performing a task exist,
costs-benefit tradeoffs act as soft constraints in choosing one set of
interactive routines (i.e., one pattern of cognitive, perceptual, and
action operations) over another. Hence, in contrast to the minimum
memory hypothesis, soft constraints posits that the control system
is indifferent to the source of the resources it uses and is sensitive
only to their expected utility as measured in time. Likewise, while
the minimum memory hypothesis implies a bias to conserve a
limited resource, soft constraints implies that the operative factor
is not a limit in the number of slots or amount of activation
available, but rather the time needed to encode items in memory,

time required to retrieve items from memory, and the probability
of retrieving an encoded item over time.

Ideal Performer Analysis

Both the minimum memory hypothesis and soft constraints
hypothesis present theories for the functional mechanism underly-
ing the selection of low-level, interactive routines. Although be-
havioral data will be extremely important in establishing the plau-
sibility of the soft constraints account of resource allocation over
that of the minimum memory hypothesis, it is not clear to us that
behavioral data by themselves can be decisive. The minimum
memory hypothesis does not deny that effort is an important factor
in deciding the mix of resources brought to bear on interactive
behavior. It merely asserts that, all else equal, the control system
is biased to expend perceptual-motor resources to conserve mem-
ory resources. Unfortunately, it is difficult for an empirical ap-
proach to determine when “all else” is equal.

A stringent test of the two hypotheses requires behavioral data
plus a modeling approach that combines two key components. In
predicting human performance, Simon told us that it is vital to nail
down the “side conditions” such as “visual acuity, strength, short-
term memory, reaction times, and speed and limits of computation
and reasoning” (Simon, 1992). Hence, the first component is a
detailed and accurate estimate of the constraints or “side condi-
tions” that bounded rationality places on human performance
(Simon, 1996). In the Blocks World task, these side conditions
include the time spent encoding an item; the time spent retrieving
an item from memory; and the probability that retrieval will be
successful given the amount of initial encoding and the retention
interval. The second component is a computational or mathemat-
ical approach that is formally guaranteed to optimize temporal
costs as opposed to any other metric. To conjoin these two key
components (as well as several other necessary components) we
combine elements of the ideal observer analysis approach from
signal-detection theorists (Geisler, 2003; Macmillan & Creelman,
2004) with rational analysis (Anderson, 1990, 1991) to present an
Ideal Performer Model.

In our case, the Ideal Performer Model will use a machine
learning approach, reinforcement learning (Sutton & Barto, 1998),
to optimize the tradeoff between time costs of the human
perceptual-motor system and the time costs of the human memory
system across the six conditions of our third Blocks World exper-
iment. As discussed in a later section, the time of each interactive
routine is derived from empirical or theoretical accounts of human
cognition. Obtaining the optimal sequence of these interactive
routines for each of the experimental conditions is left to a type of
reinforcement learning that is formally guaranteed (Watkins &
Dayan, 1992) to converge on the sequence of model components
that minimizes time for each of our six conditions. Following other
uses of reinforcement learning (e.g., Berthier, 1996), we make no
claim that the process followed by the algorithm mimics any
process followed by human cognition. We do claim, however, that
the outcome of this approach approximates what would be ex-
pected if human cognition calculated costs as if milliseconds
mattered. Hence, a good fit of the model to the data will be taken
as support for the soft constraints hypothesis and as evidence
against the minimum memory hypothesis.
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The Experiments

Three experiments were conducted using the Blocks World task
shown in Figure 1. As in Ballard’s studies (e.g., Ballard et al.,
1995, 1997) there are three windows: a Target Window containing
a pattern of colored blocks, a Workspace Window where the
participant must reproduce the pattern, and a Resource or parts
Window containing blocks that may be picked up, carried to, and
placed in the Workspace Window.

Unlike Ballard’s studies, a gray window covered each of the
three task windows. The Resource and Workspace Windows were
uncovered as soon as the participant moved the cursor into one of
the gray windows; however, the method and cost of uncovering the
Target Window varied across the three studies. Experiment 1
combined an intuitive estimate of low versus medium perceptual-
motor cost with a time consuming (but presumably low perceptual-
motor effort) manipulation for medium versus high cost. Experi-
ment 2 manipulated the perceptual-motor effort along with time by
varying the Fitts Index of Difficulty (MacKenzie, 1992) (discussed
in the following section). As the results from both of these studies
suggested that the tradeoffs we observed were sensitive to time per
se, and not perceptual-motor effort, Experiment 3 increased the
range of access costs studied by varying lockout time of the target
window across six between-subjects conditions from 0 to 3,200
milliseconds. As the three studies were very similar, we present
and discuss them together.

Method

Participants

Across each of the three studies a minimum of 16 and a maximum of 18
participants were assigned to each condition. For each study undergradu-
ates participated in the study for course credit and were randomly assigned
to experimental conditions.

Equipment and Software

The experiments were conducted on Macintosh computers running versions
8.6 (Experiments 1 and 2) or 9 (Experiment 3) of the operating system. All
experiments used a mouse for input and a 17-inch monitor set at 1024 � 768
resolution. Blocks World was written in Macintosh Common Lisp (MCL). All
window events (e.g., mouseEnter and mouseLeave) and key presses were
recorded and saved to a log file with 16.67 ms accuracy.

Design

For each 8-block pattern, each of the (48 � 48 pixel) blocks was chosen
randomly with the constraint that no color be used more than twice. The
blocks were placed at random in the Target Window’s nonvisible 4 � 4
grid. The Workspace Window was the same size as the Target Window and
contained the same 4 � 4 grid (see Figure 1).

Across all conditions of all experiments the Target, Resource, and
Workspace windows were covered by gray boxes. Only one window was
visible at any one time. In all three experiments, the Resource or Work-
space windows opened as soon as the mouse cursor entered the window.
Except for the low-access cost condition of Experiment 1 (e1-low, dis-
cussed below), all windows in all conditions stayed open for as long as the
cursor remained inside of them and closed as soon as the cursor left. Across
the three studies, the only difference in procedure was in the method and
cost of opening the Target window. For all experiments, all manipulations
were between subjects.

Experiment 1. Three levels of access cost were varied. In the low-cost
condition (e1-low) the Target Window opened and stayed open when the
control key on the keyboard was pressed and remained open for as long as
the control key was held down or until the mouse cursor entered another
window. In the medium-cost condition (e1-med) the Target window
opened as soon as the cursor entered (same method and cost as to open the
Resource and Workspace windows). In the high-cost condition (e1-high),
a 1-s lockout was imposed between the time the cursor entered the Target
window and before the window opened.

Experiment 2. To open the Target Window, all participants in Experiment
2 moved the cursor to a button located at the center of the Target window and
clicked. In this experiment, the cost of accessing information was manipulated
by changing the size of the button in the Target Window. For e2-low the button
was as big as the window, 260 � 260 pixels. For e2-med the button was 60 �
60 pixels. For e2-high the button was 8 � 8 pixels.

Changing the button size manipulated perceptual-motor effort along
with time by changing the mean Fitts Index of Difficulty (MacKenzie,
1992) for moving to the button from either the Resource or Workspace
window from 1.7 (e2-low) to 2.8 (e2-med) to 6.2 (e2-high). The Fitts Index
of Difficulty (ID) is a continuous scale defined as,

ID � log2�D

W
� 1�,

where D is the distance to the target and W is the width of the target. Fitts’
law predicts movement time (MT) as, MT � a � b � ID, where a is the
intercept and b is the slope (these parameters are not used in computing the
ID). Fitts’ law is an approximation that has held up for over 50 years.
Hence, although the reasons for why this equation usually works and an
explanation of deviations from it continue to be researched (Meyer, Smith,
Kornblum, Abrams, & Wright, 1990), the Index of Difficulty can be
considered a standard and generally accepted measure of the type of
information access costs varied in this study.

Experiment 3. For the third study, the buttons inside the Target Win-
dow were removed and the Blocks World display was restored to the look
it had in Experiment 1 (see Figure 1). Six between-subjects conditions
varied lockout time from 0 to 200 to 400 to 800 to 1,600 to 3,200 ms. Due
to software errors, data from four participants were lost, one each from
lockout Conditions 0, 200, 1,600, and 3,200.

Procedure

To select a block, participants moved the mouse cursor to the Resource
Window and clicked on a colored block. The mouse cursor then changed
to a small version (16 � 16 pixels) of the colored block. To place a block
in the workspace, the cursor was moved into that window (which opened
as soon as the cursor entered it), moved to the desired position, and the
mouse clicked.

When the participants believed that the model pattern had been copied to
the Workspace Window, they pressed the “Stop-Trial” button. The pro-
gram notified the participants if the patterns differed and required them to
revise or complete the pattern before they could move on to the next trial.

Misplaced blocks could be corrected at any time during the trial (i.e.,
before or after the Stop-Trial button was pressed). Wrong color placements
could be corrected by selecting the correct color block from the Resource
Window and placing it on top of the wrong color block. Wrong location
placements could be corrected by selecting a white “erase” block from the
Resource Window and placing this on top of the wrong location block.

For each experiment, all participants received instruction by being led by
the experimenter through a PowerPoint™ demonstration. Within each
experiment, the same slides with the same prerecorded narration were
provided to each group. After this demonstration, the participants com-
pleted one practice trial while the experimenter watched and answered any
questions the participant might have. As the participant typically had no
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problems with this practice trial, the experimenter typically said nothing. After
the practice trial the experimenter left the room and the participants completed
the remaining 39 trials in Experiment 1 and 47 trials in Experiments 2 and
3 by themselves. All experiments lasted approximately 45 minutes.

Results

For each experiment, we provide one general measure of the
differences between conditions and then focus on two specific
measures. The general measure is a count of the mean number of
times during a trial that the Target Window was uncovered. The
two specific measures look at events surrounding the first uncov-
ering of the Target Window: median duration of the first uncov-
ering and mean number of correct placements following the first
uncovering. There are two rationales for focusing on events sur-
rounding the first uncovering. First, for each trial, at the time of the
first uncovering of the Target Window, there were eight not-yet-
placed blocks. For all subsequent uncoverings, the mean number
of not-yet-placed blocks varied between conditions. Comparing
across conditions is easiest when the number not-yet-placed is
equal for each condition. Second, focusing on events prior to the
second and subsequent uncoverings avoids any potential confound
with any cumulative memory trace for the block pattern. This
ensures that the measures of duration and correct placements can
be attributed to events surrounding the first uncovering and are not
influenced by a cumulative memory trace for the block pattern.

As we are interested in the strategies that participants use after they
adapt to the access costs in their condition, the first 10 trials were
eliminated, and for each participant on each measure either the mean
or median score (depending on the measure) across Trials 11–40
(Experiment 1) or 11–48 (Experiments 2 and 3) was used.

For each of the three experiments, an independent analysis of
variance (ANOVA) was performed on each dependent variable. A
summary of all ANOVAs performed on each dependent variable is
provided in Table 1. The mean or median scores for Experiments
1–3 are reported in Tables 2-4, respectively.

Number of Target Window Accesses

Each study showed a main effect of access cost condition on the
mean number of times the target window was accessed (see the top
third of Table 1). For Experiment 1 (see Table 2), a series of three
planned comparisons showed that accesses for e1-low and e1-med
did not differ, but that each made more accesses than e1-high (low
vs. high, p � .0008; med vs. high, p � .0039). For Experiment 2
(see Table 3), a series of three planned comparisons revealed
e2-low � e2-med ( p � .016) and e2-low � e2-high ( p � .0001),
but that e2-med did not significantly differ from e2-high. For
Experiment 3 (see Table 4), the slope of the linear trend across
conditions significantly ( p � .0001) differed from zero and ac-
counted for 98% of the variance for condition. The linear trend
shows that the changes across the six conditions are all in the same
direction.

Duration of First Look

Each study showed a main effect for condition on the median
duration that the Target Window stayed open on its first access
(see the middle rows of Table 1). For Experiment 1 (see Table 2),
planned comparisons showed significant differences ( p’s � .001)
between e1-high and each of the other two conditions. There were
no differences between e1-low and e1-med. For Experiment 2 (see
Table 3), a series of three planned comparisons revealed e2-low �
e2-med ( p � .035), e2-low � e2-high ( p � .0012), but that
e2-med did not significantly differ from e2-high. For Experiment
3 (see Table 4), the linear trend across conditions was significant
( p � .0001) and accounted for 87% of the variance for condition.

Blocks Correctly Placed Following the First Look

This measure examined the mean number of blocks placed after
the first look that correctly matched the color and location of a
block in the Target Window. Across all three studies the differ-

Table 1
Analysis of Variance Table for All Dependent Measures for
Each of the Three Experiments

Experiment
Degrees of

freedom F-value
Mean-square

error
Significance

level ( p)

Number of target window accesses

E-1 (2, 45) 7.53 34.50 .0015
E-2 (2, 51) 9.27 10.83 .0004
E-3 (5, 104) 11.60 16.99 .0001

Duration of first look

E-1 (2, 45) 9.16 6,756,009 .0005
E-2 (2, 51) 6.01 8,055,996 .0045
E-3 (5, 104) 13.18 26,924,234 .0001

Blocks correctly placed following the first look

E-1 (2, 45) 9.84 6.56 .0003
E-2 (2, 51) 8.85 3.72 .0005
E-3 (5, 104) 17.39 5.85 .0001

Table 2
Mean Results for Experiment 1 Over Trials 11–40

Information access condition

(keypress)
Low

(0-lock)
Medium

(1000-lock)
High

Number of target window accesses 6.8 6.4 4.1
Duration of first look (ms) 1179 1241 2334
Blocks correctly placed (first look) 1.7 1.9 2.9

Table 3
Mean Results for Experiment 2 Over Trials 11–48

Information access condition

Low-ID Med-ID High-ID

Index of difficulty 1.7 2.8 6.2
Number of target window accesses 5.1 4.2 3.5
Duration of first look (ms) 1345 2182 2669
Blocks correctly placed (first look) 2.22 2.69 3.13
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ences across conditions were significant (see bottom third of Table
1). For Experiment 1 (see Table 2), a series of three planned
comparisons revealed a significant difference between e1-high and
each of the other two conditions (see Table 2, p � .0015). For
Experiment 2 (see Table 3), planned comparisons revealed e2-
low � e2-med � e2-high (e2-low vs. e2-med, p � .034; e2-low vs.
e2-high, p � .0001; e2-med vs. e2-high, p � .048). For Experi-
ment 3 (see Table 4), the linear trend across conditions was
significant ( p � .0001) and accounted for 97% of the variance for
condition.

Discussion of the Experimental Data

Each of the three studies found a progressive switch from more
interaction-intensive to more memory-intensive strategies as infor-
mation access costs increased. The number of times the Target
Window was opened decreased, while the duration that it was
opened increased. Presumably, the increased duration that the
Target Window was opened reflects increased time spent encoding
its contents. This interpretation is supported by the increase in the
number of blocks placed following the first look. As access costs
increase, people minimize time per trial by accessing the Target
Window less and using memory more.

Differences Between Methods of Information Access

Across the three studies we varied the method of accessing the
Target Window. For Experiment 1 we were disappointed to find no
significant differences between the e1-low and e1-med conditions
on any of our three measures. Our intuitive notions of effort seem
not to have produced the expected difference. Could these results
be better understood by using access time to characterize the
differences between conditions in access costs?

Unfortunately, access time for the Experiment 1 conditions is
hard to compare since for e1-low the log file only collected the
time at which the control key was pressed and for e1-med and
e1-high the log file only reported the time at which the cursor
entered the Target Window. However, in prior research (Gray &
Boehm-Davis, 2000), we measured key down time as 100 ms. For
the Blocks World paradigm, we estimated the time to move the
cursor into the Target Window as 146 ms. This estimate is the
average of the Fitts’ law (MacKenzie, 1992) time to move the
cursor to the Target Window from the Workspace and Resource
Window. Hence, by these estimates the difference in expected time
between e1-low and e1-med is 46 ms2 (i.e., 146 ms for el-med
minus 100 ms for e1-low), 1,000 ms between e1-med and e1-high

(due to the 1,000 ms lockout for e1-high), and 1,046 ms between
e1-low and e1-high.

If access costs are measured in time, then the Experiment 1
results are very regular. As access time increased, participants
opened the Target Window less often, but the duration of the look
increased, as did the number of correct and incorrect retrievals
from memory. Although the e1-low versus e1-med difference in
access time of 46 ms was not enough to produce significant
differences, it was enough to produce the expected pattern across
the three measures. All three measures found a significant differ-
ence between e1-high and each of the other two conditions.

Experiment 2 replicated the results of Experiment 1 using a
manipulation that covaried difficulty of perceptual-motor activity
with time. The Experiment 1 and 2 results suggested that, for the
Blocks World task, time is the operative factor and it does not
matter whether time for information access is manipulated by
varying the Fitts Index of Difficulty or by lockout. We tested this
suggestion in Experiment 3 by using six levels of lockout time as
our independent variable. The use of lockout time in Experiment 3
also enabled us to more precisely control access time while also
producing a wider range of access costs. Hence, Experiment 3
provides our best empirical test of the notion that access costs can
be measured by access time.

Across three studies, the empirical data support the view that as
access costs increased participants switched from more
interaction-intensive to more memory-intensive strategies. This
strategic switch was signaled by the decreasing number of open-
ings of the Target Window across conditions as well as by the
increasing duration that the Target Window was open. We argue
that the increase in the duration that the Target Window is open
reflects the greater amount of time that participants spent encoding
the contents of the Target Window. This explanation is supported
by the increase across conditions in the number of correct block
placements following the initial uncovering of the Target Window.

2 Alternative bases exist for estimating time difference in these two
conditions. An alternative we tried was based on CPM-GOMS (Gray &
Boehm-Davis, 2000; Gray et al., 1993). As the difference predicted by
those models is 51 ms, we have elected to report and explain the simpler
difference between keydown time and movement time (46 ms), rather than
providing the level of detail required to understand the CPM-GOMS
models.

Table 4
Mean Results for Experiment 3 Over Trials 11–48

Information access condition (lockout duration in ms)

0 200 400 800 1600 3200

Number of target window accesses 5.6 4.8 4.5 3.7 3.5 2.9
Duration of first look (ms) 1603 1702 1929 2392 3614 4634
Blocks correctly placed (first look) 2.00 2.39 2.49 2.94 3.11 3.58

468 GRAY, SIMS, FU, AND SCHOELLES



Limits of the Experimental Data

The empirical data demonstrate that as access costs increase
people adjust their strategies to be less interaction intensive and
more memory intensive. However, although we view the steady
increase in tradeoffs as persuasive evidence in support of the soft
constraints hypothesis, the empirical data do not rule out weaker
forms of the minimum memory hypothesis. For example, the soft
constraints hypothesis argues that as information access costs
increase, the use of interaction-intensive versus memory-intensive
strategies is driven by their expected utility (i.e., cost-benefit
tradeoff) as measured by time. The empirical data show a shift in
strategies but, by themselves, do not relate the shift to expected
utility. To make this argument, in the next section, we turn to a
machine-learning algorithm, reinforcement learning, that is for-
mally guaranteed to maximize expected utility (using time as its
metric) if provided with sufficient training and adequate explora-
tion of the problem space (Sutton & Barto, 1998). In fitting the
model, the six between-subjects conditions of Experiment 3 will
provide data on multiple measures against which to compare the
predictions of the soft constraints hypothesis against the implica-
tions of the minimum memory one. As discussed in the next
section, conformity to the reinforcement learning solution would
support the soft constraints hypothesis. In contrast, deviations from
the reinforcement learning solution would support the minimum
memory hypothesis.

Ideal Performer Analysis: Ideal Observer Analysis Meets
Rational Analysis3

Our ideal performer analysis combines elements of an ideal
observer analysis (Geisler, 2003; Macmillan & Creelman, 2004)
with those of rational analysis (Anderson, 1990, 1991). The ideal
observer analysis (Geisler, 2003; Macmillan & Creelman, 2004) is
used to “determine the optimal performance in a task, given the
physical properties of the environment and stimuli” (Geisler,
2003). The ideal observer may be degraded in a systematic fashion
by including side conditions, “for example, hypothesized sources
of internal noise (Barlow, 1977), inefficiencies in central decision
processes (Barlow, 1977; Green & Swets, 1966; Pelli, 1990), or
known anatomical or physiological factors that would limit per-
formance (Geisler, 1989)” (Geisler, 2003). In Simon’s term
(1992), the ideal performer analysis allows us to determine optimal
performance given “side conditions” that represent the known
limits of the performer.

Rational analysis “involves three kinds of assumptions: assump-
tions about the goals of a certain aspect of human cognition,
assumptions about the structure of the environment relevant to
achieving these goals, and assumptions about costs. Optimal be-
havior can be predicted by assuming that the system maximizes its
goals while it minimizes its costs” (Anderson, 1990, p. 244).

Conjoining the ideal observer analysis with rational analysis
yields four components of our ideal performer analysis: a descrip-
tion of the task environment; the systematic degradation of the
ideal observer by adding in known human limits; defining se-
quences of interactive routines that allow us to characterize inter-
active behavior as more interaction intensive or memory intensive;
and the optimal (ideal) sequencing of these interactive routines so

as to minimize total time. Each of these aspects of the Ideal
Performer Model is discussed in the sections that follow.

Hard Constraints: Defining the Task Environment

The goals of the human performer combined with the physical
properties of the task environment act as hard constraints on how
the task is performed. Given the task environment shown in
Figure 1 and the goal to reproduce the pattern of Target Window
blocks in the Workspace Window, then the task analysis breaks the
task into a series of ENCODE-k strategies where k is the number
of blocks (1–8) encoded on each round. Each ENCODE-k strategy
consists of two unit tasks, an Encode Blocks unit task and a Get &
Place unit task. As shown in the pseudocode provided as Table 5,
the first unit task encodes some number of blocks from the Target
Window pattern (lines 1–9) and the second gets blocks from the
Resource Window and places them into the Workspace Window
(lines 10–25).

This top level of description is completely objective in that it is
based on the goals of the task and the task environment available
for achieving these goals. For guidance on how to flesh out the
interactive routines required by each unit task we turned to an
ACT-R model that performed the task using the same experimen-
tal software as the human participants in Experiment 3 (Gray,
Schoelles, & Sims, 2005). Although that model lacked a mecha-
nism for optimizing time, it did provide a detailed cognitive task
analysis that allows us to break each unit task down further. Each
line with an entry in the cost column of Table 5 represents an
interactive routine. If we further fleshed out the model, each
interactive routine would be composed of an activity network of
cognitive, perceptual, and motor operations (as illustrated and
discussed in Gray & Boehm-Davis, 2000).

For the Encode Blocks unit task the performer must shift visual
attention to and move the mouse into the Target Window (lines 2
and 3). Between conditions, hard constraints built into the task
environment determine how long the performer must wait until the
window opens (line 4). Once the Target Window is open, the
performer encodes one or more blocks (lines 5–9). The number of
blocks encoded in memory is not constrained by the task environ-
ment, and in our Ideal Performer Model the choice of number of
blocks to encode corresponds to the selection of a particular
ENCODE-k strategy. (The issue of selecting ENCODE-k strate-
gies is discussed in the next section.) Functionally, the process of
encoding a block in our model corresponds to creating a new
declarative memory element (see Appendix A) and rehearsing the
element by performing two retrievals before moving on to the next
block.

The second unit task is Get & Place. In this unit task the
performer must move visual attention and the mouse cursor into
the Resource Window (lines 11–12), which then opens. The per-
former must then remember the color of an encoded, but not-yet-
placed block, move to a block of that color, and click on the color.

3 An annotated Common Lisp file of the model is available at the APA
archive site for Psychological Review and is posted on our website http://
www.rpi.edu/�grayw/pubs/papers/GSFS06_PsycRvw/GSFS06_PsycRvw
.htm.
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(At this point the cursor changes to a 16 � 16 pixel block the same
color as the block that was selected.) The performer then moves
the mouse and visual attention to the Workspace Window (which
then opens), locates and moves the cursor to the position of the
block, and clicks. (The cursor then changes back to the system
default arrow cursor.) The performer then moves back to the
Resource Window (which again opens) and attempts to retrieve
another encoded, but not-yet-placed, block.

Adding Side Conditions to the Ideal Performer

Within the cognitive task analysis defined by the pseudocode of
Table 5, the column “cost (in ms)” defines known human limits, or
side conditions, to each step. The time to shift visual attention, 185
ms (lines 2, 6, 11, 18, 22), is taken from the estimate used by
ACT-R (Anderson & Lebiere, 1998, pp. 150–151) for human
attention to move to an object at a known location. All movement
times (lines 3, 12, 16, 19, 20, 23) are based on the Fitts’ law times
(MacKenzie, 1992) to move a given distance to an object of a
given size. We used the default ACT-R parameters for Fitts’ law

(a � 0.05; b � 0.10). These parameters are based on those
established by Card, English, and Burr (1978) and have been
shown to provide a good fit to moving a mouse cursor around a
computer screen. Times to click on a block or position (lines 17,
21) are based on times from Gray and Boehm-Davis (2000) and
includes an estimate of 50 ms to initiate the action and 100 ms to
execute the click.

A key source of constraints imposed on the ideal performer is
the memory limitations resulting from a fallible human memory
(lines 8, 14 of Table 5). The estimates of retrieval times and
probability of retrieval were based on the theory of memory
incorporated into ACT-R (Anderson & Lebiere, 1998; Lovett,
Reder, & Lebiere, 1999). According to Anderson’s rational anal-
ysis of memory (Anderson, 1990; Anderson & Schooler, 1991),
out of the multitude of memories that have been formed over a
lifetime, any given memory should be made available to the
performer according to the probability of its being needed as
determined by its prior history of retrieval and relevance to the
current environmental context. Implications of this approach have

Table 5
Pseudo-code for the Ideal Performer Model

Line # Cost (in ms) Operation

00 Select strategy: ENCODE-k (where k � # of blocks to be encoded this round)
01 Unit Task: Encode Blocks
02 185 Shift visual attention to Target Window
03 217 Move mouse to Target Window
04 0-3200 Wait for lockout duration [Between-group independent variable]

[System Event: Target Window opens]
05 Do Encode Blocks
06 185 Shift visual attention to a new block
07 50 Encode a new declarative memory element (DME)
08 Eqn. A-2 Rehearse the encoded DME (perform 2 retrievals)
09 Until k blocks have been encoded
10 Unit Task: Get & Place Encoded Blocks
11 185 Shift visual attention to Resource Window
12 249 Move mouse to Resource Window

[System Event: Target Window closes and Resource Window opens]*
13 Do
14 Eqn. A-2 Attempt to retrieve the DME of an encoded, but not placed block
15 If a DME was retrieved
16 150 Move mouse to the block color (in the Resource Window)
17 150 Click on the block color

[System Event: Cursor changes to 8 � 8 colored square]
18 185 Shift visual attention to Workspace Window
19 216 Move mouse to Workspace Window

[System Event: Resource Window closes and Workspace Window opens]*
20 150 Move mouse to the block position in Workspace Window
21 150 Click on the position

[System Event: Cursor changes to default arrow cursor]
22 185 Shift visual attention to Resource Window
23 249 Move mouse from Workspace Window to Resource Window

[System Event: Workspace Window closes and Resource Window opens]*
24 End if
25 Until all encoded blocks are placed or a retrieval failure occurs
26 Until Workspace Window pattern matches the Target Window pattern

Apply Q-learning update rule using total time from the Encode � Get & Place unit tasks as penalty

Note. Successful performance requires selecting a continual series of ENCODE-k strategies until the pattern
in the Workspace Window matches that in the Target Window.
* Each window closes as soon as the cursor leaves it and before the cursor enters another window.
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been validated across a wide range of tasks and task environments
(Altmann, in press; Altmann & Gray, 2002; Lovett et al., 1999;
Schooler & Hertwig, 2005; Todd & Schooler, in press). The
functional consequence of this memory limitation is that if the
model tries to encode, say, 5 blocks, it will have some probability
of recalling and placing 5, 4, 3, 2, 1, or 0 blocks. (See Appendix
A for a discussion of ACT-R’s treatment of declarative memory).
Encoding (line 7) and rehearsing (line 8) takes time as do attempts
at retrieval (lines 8, 14). An item that is encoded but not retrieved
adds cost but no benefit to task performance.

Defining Sequences of Interactive Routines: Generating
Interaction-Intensive Versus Memory-Intensive Behavior

In the model of the Blocks World task, there are a maximum of
eight possible ENCODE-k strategies. Each ENCODE-k strategy
corresponds to encoding k blocks in memory, and then attempting
to place those blocks in the Workspace Window. At the beginning
of each trial eight strategies are available to the performer,
ENCODE-1 through ENCODE-8, which correspond to actions
available to the reinforcement learning agent. Along with the eight
possible actions, there are eight possible states of the task. These
states correspond to the number of blocks remaining to be placed
into the Workspace Window. For example, if there are only 2
blocks left to place in the current trial, then only actions
ENCODE-1 and ENCODE-2 are available to the performer.
Across all task states there are 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1
or 36 possible state-action pairs. It is the sequence of state-action
pairs that the performer chooses that enables us to characterize
performance as more interaction-intensive or memory-intensive—
consistently choosing the ENCODE-1 strategy corresponds to an
extreme interaction-intensive strategy, while consistently choosing
ENCODE-8 corresponds to an extreme memory-intensive strategy.

Defining an Objective Function to Optimize Sequencing
of Interactive Routines

Unfortunately, we cannot predict the sequence of state-action
pairs used across the six conditions of Experiment 3 simply from
knowing the task structure and human performance limits. In
addition to these constraints, a numerical objective function must
be specified for an ideal performer to maximize its achievement
according to this function. Although the constraints on human
performance discussed above were based on hard constraints in-
herent in the task environment, previous research, or well-
established theory, the selection of an objective function that
would determine the sequence of state-action pairs is not so clearly
defined.

One objective function might be provided by the minimum
memory hypothesis. A strict, literal interpretation of this hypoth-
esis suggests only that the ideal performer seeks to minimize the
burden on its memory system. A direct way to maximize this
objective function would be by choosing the ENCODE-1 strategy
on each round, regardless of lockout cost. Although this extreme
interaction-intensive strategy trivially fails to account for human
performance in the Blocks World task, it is also a rather severe
oversimplification of the minimum memory hypothesis. Other
interpretations of the minimum memory hypothesis might only

specify a penalty for exceeding a specified capacity limitation
(e.g., by encoding more than 4 blocks at a time), or specify a bias
toward interaction-intensive strategies in terms of a weight param-
eter. Unfortunately, as far as we know, there is no version of the
minimum memory hypothesis specific enough to implement as a
computational model.

In contrast, the soft constraints hypothesis makes a clear pre-
diction regarding the objective function that should be maximized.
If, as the soft constraints hypothesis assumes, the cognitive system
is indifferent to the type of internal resources it exploits as well as
to the location of the information it accesses (in-the-world vs.
in-the-head) then it should simply maximize expected utility ac-
cording to a cost-benefit tradeoff between competing interactive
routines. The cost estimates defined in Table 5 can be used to
maximize performance by selecting ENCODE-k strategies that
minimize the total expected time to complete each trial for each of
the six between-subjects conditions of Experiment 3.

Unfortunately, while specifying a suitable objective function is
straightforward, maximizing achievement of the objective function
to determine optimal performance is not an easy task. For example,
if there remain 5 blocks to be placed, is the fastest strategy to
ENCODE-5? Or, would the sequence ENCODE-3 and
ENCODE-2 be faster, due to greater probability of successfully
retrieving every block that was encoded? Further, how does the
expected utility of each ENCODE-k strategy change across exper-
imental conditions? Whatever the best solution, it is clear that
given the probabilistic nature of memory, applying the soft con-
straints hypothesis to define the optimal strategy is not a simple
matter.

To some degree, humans have some metacognitive sense re-
garding how likely they are to remember something, given how
much effort they are willing to spend memorizing it, and given the
length of time they need to remember it. For example, when
looking up a telephone number in a directory, the time spent
committing the number to memory reflects a tradeoff between the
time it must be held in memory and the time required to relocate
the number if it is forgotten while walking across the room to the
telephone. In general, there seem to be many life events when
information is temporarily needed and we make a tradeoff between
encoding effort, retention interval, and the cost of reacquiring
information if we forget it. Our ability to negotiate this tradeoff
with our own memory limitations comes through experience re-
membering and forgetting things amortized over a lifetime of
practice. However, given the varied nature of demands on mem-
ory, it does not seem likely that this metacognitive tuning would
yield an immediate, optimal solution to each new memory chal-
lenge. In the case of the Blocks World task, we found that partic-
ipants required on the order of 10 trials to fine tune their strategies
to match the demands of the experimental condition.

A Reinforcement Learning Solution to the Objective
Function

The final component of the ideal performer analysis is a formal
mechanism for maximizing performance according to the objec-
tive function while simultaneously satisfying the constraints im-
posed by the human performer as well as the task itself. In our
model we employed a reinforcement learning algorithm,
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Q-learning, that is formally guaranteed to converge on the optimal
solution to this tradeoff if provided with sufficient training and
adequate exploration of the problem space (Sutton & Barto, 1998;
Watkins & Dayan, 1992). Reinforcement learning is a family of
machine learning techniques in which agents learn directly from
the outcomes of their actions. Reinforcement learning entails an
unsupervised, trial-and-error exploration of the task environment,
in which rewards can be defined in terms of minimizing solution
time.

In recent years researchers in the neurocognitive community
have examined reinforcement learning as a plausible model of how
humans learn from their mistakes (Dayan & Abbott, 2001; Hol-
royd & Coles, 2002). The technique has also recently attracted the
attention of the greater cognitive modeling community (Fu &
Anderson, 2004, 2006; Nason & Laird, 2004; Phillips & Noelle,
2004; Wu & Liu, 2004). However, for the purpose of this research
we are interested in reinforcement learning not as a theory of
human cognitive functioning, but rather as a tool for determining
optimal performance by maximizing expected utility under a set of
explicit constraints. Reinforcement learning has similarly been
used to approximate optimal motor control in reaching tasks and as
a model of motor learning (Berthier, 1996; Berthier, Rosenstein, &
Barto, 2005).

As discussed earlier, the Blocks World task has 36 state-action
pairs defined by the number of states (i.e., not-yet-placed blocks
can range from 1 to 8) and number of ENCODE-k strategies that
can be applied to each state. The value function computed by
reinforcement learning, Q(s,a) (see Appendix B), ranges over these
36 state-action pairs. Each time the model completes an
ENCODE-k strategy, it is penalized using the Q-learning update
rule by the total time required to complete the strategy (the total
duration for the Encode Blocks and Get & Place Encoded Blocks
unit tasks, see Table 5). Over time, the value function learned by
the Ideal Performer Model corresponds to its estimate of how long
it will take to complete the entire trial given that a particular action
is chosen in a particular state.

In introducing the soft constraints hypothesis, we wrote of
maximizing expected utility in terms of a cost-benefit tradeoff. In
implementing the soft constraints hypothesis in a reinforcement-
learning approach, the outcomes of actions are defined only in
terms of their local cost. Benefit in the model is implicitly defined
as minimizing global costs—that is, the time required to complete
an entire trial. Hence, a strategy that encoded 8 blocks, forgot 5,
and placed 3 would not be as beneficial as a strategy that encoded
and placed 3 blocks. The former strategy has wasted time encoding
5 blocks that it did not place. These 5 blocks require at least one
other round of ENCODE-k strategy. Hence, in the reinforcement-
learning model, just as costs are defined by time, benefits are
defined as minimizing time. Optimizing benefits entails minimiz-
ing costs.

Summary of the Ideal Performer Analysis

The ideal performer analysis combined elements of a traditional
ideal observer analysis (Geisler, 2003; Macmillan & Creelman,
2004) with a rational analysis (Anderson, 1990, 1991) to produce
our Ideal Performer Model. At the top level of description, the
requirements of the model were defined by the goals of the task

and the task environment. We fleshed out the model with a
cognitive task analysis that was based on an ACT-R model that
performed the task using the same experimental software as the
human participants in Experiment 3. The time required to perform
each step in the model (see Table 5) was based on the known limits
of the human performer. Most of the times for cognitive, percep-
tual, and motor operations reflected accepted estimates for perfor-
mance. In our case, we took these times from the estimates used by
ACT-R; however, the ACT-R estimate for these times is generally
consistent with that of EPIC (Kieras & Meyer, 1997) as well as the
much older Model Human Processor (Card et al., 1983; Newell,
1990). The most notable limit we discussed was the time required
to encode an item into memory, the time required to later retrieve
that item, and the probability that retrieval would be successful.
Our estimate of these times and probabilities are directly derived
from Anderson’s rational analysis model of memory (Anderson,
1990; Anderson & Schooler, 1991).

Performing the Blocks World task was defined as a series of
choices among ENCODE-k strategies for each state of a Blocks
World trial. Optimizing this series of choices by an objective
function that minimizes total time (according to the soft constraints
hypothesis) is a hard problem in large part due to the probabilistic
nature of human memory. As we lack a cognitively valid formal
mechanism for maximizing achievement of this objective function,
we turned to a reinforcement learning technique, Q-learning, that
is formally guaranteed to find an optimal solution if certain as-
sumptions are met. The training, testing, and performance of this
Ideal Performer Model are reported in the next section.

Predictions From the Ideal Performer Model

In this section, we first walk through the training procedure as
well as the utility estimates and memory estimates derived from
the training phase. Next we compare model performance with
human performance on each of the three dependent variables
discussed in the experimental section: blocks correctly placed
following the first look, duration of first look, and the per-trial
number of target window accesses. From the measure of blocks
placed following first look, we derive a fourth measure: the prob-
ability across lockout conditions that participants will place 0 to 8
blocks. This measure is also compared with model performance.

Training the Ideal Performer Model

For each of the six lockout conditions, the model was first
trained for 100,000 trials. Although the model only had to explore
36 state-action pairs, in the Blocks World task completing a single
trial requires a sequence of actions (i.e., multiple rounds of
ENCODE-k strategies where each round is represented by the
pseudocode in Table 5), and the outcomes of each action are
probabilistic. If the model encodes 4 blocks (the ENCODE-4
strategy), there is some probability that it will actually place 4, 3,
2, 1, or 0 blocks.

For the case in which each ENCODE-k strategy results in the
deterministic placement of a single block, there would be 8! or
40,320 different action sequences. As each action can result in as
few as zero placements and one can result in as many as eight, the
potential number of action sequences is very great. However, for
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the ACT-R memory equations (see Appendix A) and the memory
parameters used in the study (see Appendix C) placements at the
extremes (e.g., 0 or 8) will be very rare. Given these considerations
and our experiences with Q-learning in the Blocks World para-
digm, 100,000 training trials seem reasonable though somewhat
conservative.

The challenge for the reinforcement-learning model is to extrap-
olate from local rewards following each ENCODE-k strategy to an
estimate of the time required to complete an entire trial for each
action and in each state. During the training, the model explored
actions at random.4 This ensured that it gained extensive experi-
ence with each combination of ENCODE-k strategy at every phase
of a Blocks World trial.

The output of the Ideal Performer Model consists of two sets of
information. The first is the table of utility estimates for each
state-action pair. During training, the model was penalized by the
negative time required for each ENCODE-k strategy. Under this
approach, maximizing rewards corresponds to minimizing total
time. Following training, the utility estimates correspond to the
estimated minimum time required to complete the entire trial given
that a specific action is chosen in the current state. Table 6 shows
the utility estimates for the eight strategies available at the initial
state (i.e., 8 to-be-placed blocks) of the trial. As the table shows,
choosing a suboptimal action in the Blocks World task involves
relatively little penalty—for each lockout condition, the difference
between the best and worst ENCODE-k strategy for the first visit
to the target window is on the order of 1 to 2 seconds. Given the
small range of expected utilities, it is not obvious that participants
in the task should be sensitive to these differences. As such, the
ability of the Ideal Performer Model to fit the human data provides
a strong test of the claim that time cost acts as a soft constraint in
the Blocks World task.

The second piece of information produced by the Ideal Per-
former Model is the number of blocks successfully recalled and
placed as a function of the number encoded in memory. The
model’s memory performance is jointly determined by the ACT-R
memory equations and the retention interval imposed by the
Blocks World task. The memory equations involve three parame-
ters: a retrieval threshold, an activation noise parameter, and a
latency scaling parameter, (see Appendix C). During training, the
model’s memory performance was recorded for each ENCODE-k
strategy, producing the distribution of blocks placed that is shown
in Figure 2.

From these two sets of information, the utility table (see Table
6) and memory performance (see Figure 2), it is possible to make
a number of predictions for human performance in the Blocks
World task. Although the utility table defines the optimal strategy
for the first visit to the target window (deterministically choose the
strategy with the highest utility), we have theorized that time is a
soft, as opposed to hard, constraint in the task. Consequently, we
expect that participants will not always select the optimal strategy,
but rather will approximate the optimal policy to the extent that
their behavior is influenced by time as a soft constraint. To
transform a utility estimate into a selection probability, we used
ACT-R’s strategy selection equation, the “softmax” rule, which
has also been widely used in other reinforcement learning models
(Sutton & Barto, 1998). The probability of selecting strategy
ENCODE-k at the start of a trial is related to its utility, Uk, as well
as to the utility of all competing strategies:

p(k) �
eUk/t

�
j�1

8

eUj/t

.

In this equation, t is a noise parameter controlling the probability
that the model chooses a suboptimal strategy. As t approaches 0,
the model will deterministically select the optimal strategy. Be-
cause of this property, the noise parameter reflects an estimate of
the “softness” of time as a constraint on behavior.5

Given the probability of selecting each ENCODE-k strategy,
p(k), and the probability of placing a number n blocks given that
strategy k has been selected, p(n|k), it is possible to directly

4 It might be objected that by exploring actions at random the model will
only learn the utility of the random behavior policy. However, as
Q-learning is an off-policy learning algorithm (Sutton & Barto, 1998), it is
still able to learn the optimal policy through random exploration, and this
approach produces the fastest learning by maximizing exploration of the
full state space.

5 The noise parameter t is related to the standard deviation of a logistic
distribution according to t � �6�/�. Since utility in our model is defined
strictly in terms of time, this allows us to determine the probability that our
model will discriminate between two strategies with a given difference in
expected time cost. Using the value of t fit to our data (t � 0.491, see
Appendix C), for a time difference of 1 second between competing strat-
egies, the model will select the faster strategy on 88.5% of its choices.

Table 6
The Utility Estimates Learned by Q-learning for the Initial State (8 to-be-placed blocks) of the
Blocks World Task

Lockout
(ms)

ENCODE-k strategy utilities (seconds)

1 2 3 4 5 6 7 8

0 �26.503 �26.421# �26.551 �26.766 �26.994 �27.219 �27.574 �27.879*
200 �27.624 �27.439# �27.488 �27.642 �27.814 �28.057 �28.301 �28.596*
400 �28.478 �28.271# �28.275 �28.366 �28.529 �28.738 �28.943 �29.243*
800 �30.409 �30.047 �29.935# �29.937 �30.020 �30.129 �30.291 �30.560*

1600 �33.629* �33.052 �32.845 �32.726 �32.627# �32.689 �32.769 �32.926
3200 �39.748* �38.899 �38.379 �38.043 �37.786 �37.662 �37.609 �37.607#

Note. For each lockout condition # indicates the best Encode-k strategy and * indicates the worst.
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calculate the distribution of blocks placed following the first visit
to the target window. If x is a random variable representing the
number of blocks placed, then its distribution is given by:

p(x � n) � �
k�1

8

p(n�k)p(k).

Likewise, the mean number of blocks placed is calculated as the
expected value of x:

x� � E[x] � �
n�1

8

p(x � n) � n.

The ideal performer analysis also makes predictions about two
other empirical measures reported for the human participants. The
mean duration of the first look to the target window is jointly
determined by the estimated costs from the task analysis in Table
5 and the probability of selecting each ENCODE-k strategy. Fi-
nally, the expected number of visits to the target window can be
determined using Monte Carlo simulation of the Ideal Performer
Model.6 The next section presents the comparison of the model
predictions to human performance for each of these measures.

Testing the Ideal Performer Model

The predictions of the Ideal Performer Model are dependent on
four parameters (three parameters for the memory equations and
one noise parameter for the strategy selection equation). The
values for each parameter were fit to the human data on the key
measure of number of blocks placed following the first look to the
target window. The best-fitting parameters for the memory equa-

tions were determined using a grid search using a range of values
based on previously published ACT-R models or established de-
fault values.7 The noise parameter for the strategy selection equa-
tion was determined using least square error minimization. The
best-fitting values for all the parameters, as well as estimates of
perceptual-motor times used in the model are reported in Appendix
C. The same parameter settings were used to produce all of the
model predictions.

For the key measure of number of blocks placed following the
first uncovering of the target window, the model has an RMSE of
0.092 and r2 to the human data of 0.969 (see Figure 3). Although
the standard error for the human data is quite low, the difference
between the model’s prediction and human performance is within
1 standard error for five of the six lockout conditions (for the
800-LOCK condition the model is within 1.15 standard errors).

Figure 4 compares the distribution of blocks placed following
the first visit to the target window. The model showed an excellent
fit to the human data, with an overall RMSE of 0.034, and r2 �

6 In theory, it may be possible to produce closed-form predictions for the
number of visits rather than relying on Monte Carlo simulation. However,
the number of visits is determined by the conditional probabilities of
selecting each strategy on each visit, as well as the probabilistic outcome
of each strategy, resulting in computations that quickly become unwieldy.

7 Specifically, the latency parameter F was examined in the range
0.9–1.2 in increments of 0.1 units; the retrieval threshold was examined in
the range 0.25–0.35 in increments of 0.025; and activation noise was
examined in the range 0.28–0.32 in increments of 0.02. A grid search over
a relatively small parameter space was necessary as changing any of the
memory parameters requires re-training and running the Q-learning model,
preventing more efficient gradient-based parameter fitting methods.

Figure 2. Probability of retrieving and placing n blocks given that k blocks have been encoded, p(n|k), for each
ENCODE-k strategy.
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[0.892, 0.887, 0.947, 0.902, 0.958, 0.953] for the 0-LOCK through
3200-LOCK conditions respectively.

For the mean duration of the first look at the target window, the
Ideal Performer Model also closely predicts the human data. The
model prediction has an RMSE of 0.431 and r2 of 0.980 to the
human data, shown in Figure 5.

Finally, the model’s prediction for the number of visits to the
target window also closely matches human performance in the
task, with an RMSE of 0.397 and r2 � 0.970 (see Figure 6).

It is worth repeating that the model’s predictions were fit to just one
of the empirical measures (number of blocks placed, Figure 3), while
the three remaining predictions—distribution of blocks placed (see
Figure 4), number of visits to the target window (see Figure 6), and
duration of first uncovering (see Figure 5)—all closely matched
human performance using the same parameter settings.

Discussion of the Ideal Performer Model

As shown by the low RMSE and high r2, the Ideal Performer
Model predicts a number of blocks placed that is within the
range of the standard error of the human data. Interesting
enough, it does so by incorporating a rational analysis-based
theory of forgetting that has accumulated a broad base of
support across many diverse laboratory (Altmann & Gray,
2002; Anderson & Lebiere, 1998; Anderson & Milson, 1989;
Lovett et al., 1999) and real-world tasks (Anderson & Schooler,
1991; Schooler & Hertwig, 2005).

The results of the Ideal Performer Model across four empir-
ical measures suggest that human performance on the Blocks
World task reflects a cost-benefit tradeoff between perceptual-
motor and memory costs defined by time. Within the constraints
of memory and perceptual-motor limits, the human control

system adapts to the costs of information access in its task
environment by making rational, cost-benefit tradeoffs among
sets of more interaction-intensive and more memory-intensive
strategies. The Ideal Performer Model is not biased to favor
perceptual-motor effort over memory effort. Rather, it is sen-
sitive only to costs and benefits defined by time. The noise
parameter used to fit the human data suggests that humans in
the Blocks World task adopt a close approximation to optimal
behavior, and provides an estimate on the extent to which
human performance in the task is driven by the soft constraint
of time. Hence, the results support the soft constraint perspec-
tive on embodied cognition that views memory and perceptual-
motor resources as allocated by a control system that attempts
to optimize performance time. It seems improbable that a com-
putational model employing the minimum memory hypothesis
would be able to account for the same broad range of results.

Summary and Conclusions

The soft constraints hypothesis maintains that at the 1/3 to 3
second level of interactive routines, that is, the embodiment level
(Ballard et al., 1997), tradeoffs among the use of cognitive, per-
ceptual, and motor resources are made as if time is a resource that
is to be preserved. In this paper we presented three experiments
and an Ideal Performer Model that compared the predictions of the
soft constraints hypothesis with that of the minimum memory
hypothesis in a Blocks World task.

Human Performance

In all conditions, across each experiment, once the Target
Window was uncovered the task environment was exactly the

Figure 3. Number of blocks placed following first uncovering for human participants (Experiment 3 with �/�
1 standard error bars) and the Ideal Performer Model.
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same. The Target Window stayed open for as long as the mouse
cursor remained inside it (in E1-low—for as long as the control
key was held down). The Resource Window and Workspace
Window worked exactly the same across all studies and condi-
tions; both opened as soon as the mouse cursor entered and
stayed open until the mouse cursor left. Another way of saying
this is that once the Target Window opened, the task was
exactly the same across all conditions and all studies, and no
hard constraints existed that would account for why the task
was not performed exactly the same. However, for the current
studies, even when the comparisons between two conditions
were not significant (e.g., as for e1-low vs. e1-med) an increase
in the range of 50 ms to uncover the Target Window resulted in
small, but consistent, increases in the duration for which the
Target Window was uncovered and small, but consistent, in-
creases in the number of blocks placed.

The Ideal Performer Model

Although the experimental studies documented a tradeoff
between access costs and the use of more interaction-intensive
or more memory-intensive strategies, the studies did not suffice
to determine the nature of that tradeoff. To precisely predict
what an optimal tradeoff would be between perceptual-motor
and memory costs, we created an Ideal Performer Model that
maximized performance in the Blocks World task by selecting
ENCODE-k strategies that minimized the total expected time to
complete each trial for each of the six between-subjects condi-
tions of Experiment 3.

The Ideal Performer Model used realistic assumptions regarding
the time required to execute each interactive routine. For memory
operations it used a memory model, based on rational analysis, that
yielded assumptions about encoding duration, retrieval latency,

Figure 4. Comparison of the distribution of blocks placed following the first visit to the target window for
humans (top) and the Ideal Performer Model (bottom).
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and the forgetting that would occur in the retention interval be-
tween encoding and placement. For the six conditions of Experi-
ment 3, the performance of the model was nearly indistinguishable
from human performance. We conclude that, subject to the limi-
tations of the memory system, human performance is nearly iden-
tical to what would be expected if the allocation of cognitive,
perceptual, and motor resources was based on their temporal costs
and if overall benefit was defined by minimizing these costs.
Cost-benefit tradeoffs among lockout time, perceptual-motor ac-
tivity, and fallible memory act as soft constraints that select the
interactive behaviors that are best adapted to the task environment.

Implications for Views of Memory and Metacognition

The success of the model has implication for theories of mem-
ory. First, it shows that a model based on a rational analysis of the
demands the environment makes on memory can be successfully
applied as a constraint on a rational analysis of interactive behav-
ior. Given the vast differences between the nature of the memory
tasks on which the model was derived (Anderson & Schooler,
1991) and the much more interaction intensive tasks required for
performance in the Blocks World task, this success of the memory
theory presents both a validation and important generalization of
the theory.

Second, regardless of the ultimate validity of Anderson’s model
of memory, its use in the Ideal Performer Model provides a strong
suggestion for the form in which theories of memory must take if
they are to be usefully applied to interactive behavior. Rather than
simply focusing on the number of slots or amount of activation, the
Ideal Performer Model suggests that theories of memory must
encompass three additional factors. First, is the time needed to

raise the activation of an item so that it can be retrieved over the
time period for which the item is needed. Second, is the time
required to retrieve an item from memory. Third, is the probability
that an encoded item will be retrieved due to decay and noise in the
item’s activation.

Additionally, the close fit of the human data to the predictions
of the Ideal Performer Model suggests that people have implicit
knowledge or metacognition of these three memory factors, and,
with relatively little experience with a new task (within 10 trials in
our studies), are able to near-optimally adapt their interactive
behaviors to meet the demands of the task environment. (In a
sense, it is this metacognitive knowledge that took the Ideal
Performer Model 100,000 training trials to acquire.8) Although
this extrapolation goes beyond the current study and model, imag-
ining that human performance is adapted to experienced limits in
cognition, perception, and action is congruent with recent results
that show that human motor performance is exquisitely adapted to
compensate for the effect of noise in the motor system (Maloney,
Trommershäuser, & Landy, in press; Trommershäuser, Maloney,
& Landy, 2003).

Embodied Cognition, Bounded Rationality, Rational
Analysis, and the Ideal Performer Model

The soft constraints hypothesis is broadly compatible with many
claims made for embodied cognition (Clark, 2003; Wilson, 2002)

8 We thank Professor Ruth Maki (Texas Tech University) for pointing
out that the training trails achieved in the model meta-cognitive knowledge
regarding the limits of its memory system.

Figure 5. Duration of the first uncovering of the target window for the human participants (Experiment 3 with
�/� 1 standard error bars) and Ideal Performer Model.
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but offers a more nuanced understanding of what these claims
imply. For example, the soft constraints hypothesis addresses two
claims in Wilson’s (2002) taxonomy of embodied cognition. First,
is the claim that we off-load cognitive work onto the environment.
For this claim the soft constraints hypothesis implies that the
control system is indifferent to information source; resources are
allocated to knowledge in-the-world versus in-the-head not based
on source, but based on the cost of accessing the source. Second,
is the claim that the environment is part of the cognitive system.
The soft constraints hypothesis offers the same comment on this
claim as to the first—that the human information processing sys-
tem is indifferent to the source of its information. The only bias
imposed by biology is that of finding the most cost-effective
means of using available cognitive, perceptual, and motor re-
sources to accomplish a given task in a given task environment.

The power of the Ideal Performer Model flows directly from our
combination of an ideal observer analysis with rational analysis.
Perceptual-motor side conditions were derived from a variety of
sources outside of the current study. The equations that described
the side conditions for encoding time, retrieval latency, and prob-
ability of recall were themselves based on a rational analysis of
human memory (Anderson, 1990, 1991; Anderson & Milson,
1989; Anderson & Schooler, 1991). As an approach, rational
analysis is sometimes criticized for being the antithesis of the
bounded rationality approach (Howes, Lewis, & Vera, in press).
The Ideal Performer Model shows that a rational analysis of one
side condition, in this case human memory, can provide an im-
portant bound that allows us to make progress on a rational
analysis of another side condition, in this case, optimizing the use
of internal resources by cost-benefit tradeoffs in the access of
knowledge in-the-world versus in-the-head.

Conclusions

When you sit down the night before the birthday party to
assemble the child’s toy, you could force yourself to first memo-
rize all of the instructions, or to memorize the first half, or to
memorize every other line, or not. There are no hard constraints in
the task environment that would prevent you from implementing
any of these strategies. However, the work presented here suggests
that you will treat time on task as a soft constraint that you will
minimize by a cost-effective mixture of perceptual-motor and
cognitive operations.

Our two sets of methods—experimental results and Ideal Per-
former Model—converge in their support for the soft constraints
hypothesis. The control system is not biased to favor perceptual-
motor over cognitive costs. Rather, at the 1/3 to 3 sec level of
embodiment, the allocation of cognitive, perceptual, and motor
resources is based on cost-benefit tradeoffs measured in time. The
soft constraints view of embodiment suggests that many of the
details of the cognitive system can be abstracted away and the
function of the integrated cognitive-perceptual-motor system can
be explained by expected utility measured in time. An information
system that truly integrates cognition with perceptual-motor oper-
ations integrates the use of knowledge in-the-head with knowledge
in-the-world so as to conserve the resource of time, not cognition.
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Appendix A: Declarative memory in ACT-R

To implement human memory limitations in the reinforcement learning
model, we used the memory theory incorporated into the ACT-R cognitive
architecture (Anderson & Lebiere, 1998; Lovett et al., 1999). This theory
has been widely tested, compares well to alternative approaches (Sims &
Gray, 2004), and has been successful at capturing human performance on
a wide range of memory tasks. At its core, the ACT-R memory model
makes quantitative predictions regarding the probability of successfully
recalling a previously encoded declarative memory element, or DME, as
well as the retrieval latency for that DME. Both the probability of recall
and retrieval latency are governed by activation, which increases with
practice and successful retrieval of an item, and decays as a function of
time. The equation below gives the formula for computing the base
activation of a DME.

ai � ln��
j�1

n

tj
�d� � � (Eqn. A-1)

In this equation, ai is the activation of DME i, tj is the time since its jth
retrieval, and d is a decay parameter governing how quickly each retriev-
al’s influence on the activation decreases. The summation is over the entire
history of retrievals of the DME. The last term is a noise component that
is drawn from a logistic distribution and allows the activation of the DME
to fluctuate from moment to moment. In the complete ACT-R memory
model, environmental context and relevance to the current goal also influ-

ences the activation of a DME, however this component introduces addi-
tional complexity not relevant to the Blocks World model.

Retrieval probability is governed by adding a threshold parameter to the
model. If retrieval of a DME is attempted and the DME’s base activation
is below the threshold, then a retrieval failure occurs, meaning that the item
has effectively been forgotten. However, as the noise component of acti-
vation is dynamically generated, it is possible for a DME to be below
threshold on one retrieval attempt but then above threshold on a second
attempt.

The time it takes for a retrieval or a retrieval failure is governed by the
activation of the DME such that more active DMEs are recalled faster than
less active DMEs. The exact equation used by ACT-R is given below.

RTi � F � e�ai (Eqn. A-2)

As before, ai is the activation of DME i, while F is a latency scaling
parameter, and RTi is the retrieval time in seconds for that DME. In
general, the DME with the highest level of activation is the one retrieved.
If no DME is above the threshold at the time of retrieval, then a retrieval
failure occurs. In this case, the retrieval threshold parameter is used in lieu
of the DME activation (ai) to compute the time taken by the failed retrieval,
with the consequence that retrieval failures take longer than successful
retrievals. Since retrieval time is based directly on activation, the moment-
to-moment noise in activation also causes the retrieval time to fluctuate.

Appendix B: Q-Learning and ENCODE-k strategies

At its core, reinforcement learning is concerned with learning a value
function Q(s,a) that transforms states of the environment and actions into
a numerical expected reward outcome. This value function is followed by
the agent according to a policy function that maps expected rewards into a
particular sequence of actions. Q-learning, the particular reinforcement
learning algorithm used here, has the additional property that it can learn
an optimal behavioral policy while randomly exploring actions in the
environment, so long as certain reasonable assumptions are met (for
instance, sufficient training and exploration of the problem space). The
exact Q-learning update rule is given below, though see Sutton and Barto
(1998) for a more thorough treatment of the algorithm.

Q(s, a)4 Q(s, a) � ��r � � � max
a	

Q(s	, a	)�Q(s, a)
 (Eqn. B-1)

In this equation the value of a particular action a is updated according to
the local reward received, r, as well as the future expected rewards as a
consequence of reaching the successor state, s	. Alpha is a parameter
controlling how quickly the agent learns and can range from 0.0 to 1.0. At
the lower end, the model stops learning completely, while at the upper end
each new experience obliterates all previous learning by the agent. In

training the Ideal Performer Model alpha was initially set to 1.0 and then
decreased with increased experience according to 1/n, where n is the
number of experiences with a particular action. This scheme is equivalent
to taking the arithmetic average of all rewards, and in the Q-learning
algorithm is sufficient to guarantee that the optimal policy can be learned
with sufficient practice. The parameter gamma controls whether the model
discounts future compared to immediate rewards. In the task this parameter
was set to 1.0, meaning that the algorithm should strive to maximize global
performance rather than select actions locally greedily.

In the Blocks World task, optimal performance is defined as completing
the overall task as quickly as possible. Therefore, after the Q-learning
model selects each action, it is penalized according to how long that action
took. As discussed in the text, in the model of the Blocks World task, there
are a maximum of eight possible actions and 36 possible state-action pairs.
Over time the value function Q(s, a) learned by the agent corresponds to its
estimate of how long it will take to complete the entire task given that a
particular action is chosen in a particular state. The costs used as rewards
in the model are simply the total time needed to complete a particular
ENCODE-k strategy.

(Appendixes continue)
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Appendix C

Parameters Used by the Ideal Performer Model

Parameter Value Source

Motor parameters

Mouse-target-to-resource 249 ms Fitts’ Law
Mouse-resource-to-workspace 216 ms Fitts’ Law
Mouse-workspace-to-resource 249 ms Fitts’ Law
Mouse-workspace-to-target 217 ms Fitts’ Law
Mouse-block-to-block 150 ms Fitts’ Law
Mouse-click 150 ms (Gray & Boehm-Davis, 2000)
Shift of visual attention 185 ms ACT-R default

Memory parameters (ACT-R equivalent)

Activation decay (BLL) 0.5 ACT-R default
Activation noise (ANS) 0.28 Free parameter
Retrieval threshold (RT) 0.325 Free parameter
Latency scaling factor (F) 0.9 Free parameter

Q-learning parameters

Utility noise (t)* 0.491 Free parameter
Alpha 1/n ACT-R default; n is the number of experiences with a

particular action
Gamma 1.0 Default value

* The noise parameter is also related to ACT-R’s expected gain noise parameter (EGS) according to EGS
� t /�2 (Anderson & Lebiere, 1998). Specifically, in our model EGS � 0.347.
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